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I. INTRODUCTION

I Adaptive arrays based on the LMS algorithm (1) are very appealing
as a means of protecting coninunicatlon systems from interference (2,3).

I These antennas can automatically track desired signals and simultan-
eously null interfering signals. Moreover, they can do this using

I conformally mounted elements on an irregular surface, such as an air—
craft. Possible applications of adaptive arrays include comunication

I systems subject to accidental interference, RFI and janining.

I 
An important problem with adaptive arrays, however, is their lim-

ited dynamic range. Two factors restrict the dynamic range of an adap-
tive array. First, there are equipment l imitations. The multipliers ,

I I amplifiers, etc., in the LMS feedback loops operate properly only over
a certain range of signal power. However, although equipment limita-

I I tions are very real, they are not fundamental; that is, they are not
due to the LMS feedback concept Itself. Rather, they appear because

I the equipment performance does not match the mathematical behavior
of the LMS algorithm. Also, it is possible to overcome such limita-
tions with improved design.

The second factor limiting dynamic range is more fundamental,
because it is inherent in the LMS algorithm. The limitation occurs
because the speed of response of the LMS feedback loop depends on re-

I ceived signal power. The array responds slowly to a weak signal and
rapidly to a strong signal. This situation makes it difficult to ac-

I comodate a wide range of signals because, In most applications of adap-
tive arrays, system requirements limi t both the minimum and maximum

I 
speed of response of the array. As a result, the array can hand le
only a limited range of signal power without exceeding speed of re-
sponse bounds.
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In this report we address the problem of variable time constants
in the LMS algorithm. The purpose of the report is to present an im-

proved form of adaptive array feedback loop that appears to solve this j~.
problem. The feedback loop described produces the same steady—state
weights as the LMS algorithm, but has the property that its time con- 1-
stants are nearly independent of signal power. E .

In Section II of the repor t, we establish notation and discuss
the time constant behavior of the LMS array. In Section III , we de—
termine an “ideal” control law for the adaptive array. In Section
IV , we describe a feedback loop whose performance approximates this
ideal control law. Section V presents an example showing the transient
behavior of an array using this feedback ioop. L

II. DYNAMIC RANGE LIMITATIONS IN ThE LMS ARRAY

An IMS adaptive array (1) has weights controlled by the gradient
law

dw
= — k v~ [ e2(t)] , 1 < I < 2M (1)

thwhere w1 is the I array weight, k is a positive constant, M is the
number of elements in the array and v~J ~2(t)J is the 1th component F
of the gradient of the squared error signal. The error signal c(t)
is defined by

2M
£(t) R(t) - ~ wjxj(t)~ (2)

j—1

where R(t) Is the Reference Signal (or “Desired Response” (1)) and
x1(t) is the 1

th quadrature signal in the array. Substituting Equation
(2) In EquatIon (1) yields I ;

dw1 2k x 1 (t) c(t), (3)

2 
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which corresponds to the feedback loop shown in Figure 1.

OTHER w 1xj TERMS

~ 
—*s(t)

R (t)

ii: Figure 1. The LMS feedback loop.

I By substituting Equation (2) into Equation (3) and collecting
terms involv ing w1 on the left, we find that the weights in an LMS

I t array satisfy the system of differential equations

I 
.

~~~~~ 

+ 2k xx T
~ 2k XR(t), (4)

where w is the weight vector,

I 
W :  (5)

I w2M

I
3

I
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I-i
and X is the signal vector, I

x1(t) j
x2(t)

. . (6)

.

X2M( ~

The matrix XXT and the vector XR(t) are time—varying, so it is dif- 1-
ficult to solve Equation (4) exactly. However, for most applications
of adaptive arrays, w varies slowly compared to the signals x 1 (t) and
R(t) and one may obtain approximate solutions to Equation (4) by re-
plac ing xxT and XR (t) by their time average values. Let ~ and S denote ~

- . - 
-

these averages:

(7a)

S = XR( t) . (7b)

With this substitution, the system in Equation (4) becomes

d + 2K~w = 2kS, (8)

which has constant coefficients and may be solved by diagonalizing I
•. The solution for the 1

th weight is 
, -

—2k~1t -2kx,t _2kx
~,M
t {

w1 = A 1 e +A 1 e + ... +A 1 e
(9) 2 2M

(9)

where A1 , A~ , ..., A 1 are constants determined by initial condi-
tions, 4,x,,2... A?M a~~ the eigenvalues of $, and c1 is the steady- [~ L
state value of w1. We note that the time constant of the ~th exponen-
tial term is [1

. (10)

1.-
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A dynamic range problem arises in the LMS array because the eigen-

values of •, and hence the time constants, depend on the signal powerI received by the array. A strong signal produces a large elgenvalue
- and a weak signal produces a small eigenvalue. In a typical design

I problem the strongest signal is interference and the weakest signal
is thermal noise. In this case it can be shown (4) that the maximum
an d m in imu: eigenvalues , 

~~ 
and 

~ IN’ are rela ted by*

I ~~~~~~~~ (11)AMIN

~ I 
where I is the Interference power and N is the thermal noise power.

- The elgenvajue ratio in Equation (11) can easily be quite large. For
I example, if we wish to null interference 60 dB above thermal noise,
I- will be approximately jo6 times XMIN• Equation (9) shows that

~ I a typical weight transient will include a fast exponential term as-
sociated with XM~ 

and a slow exponen ti al term assoc iated with
The time constants for these two terms will be in the ratio given by

I 
~ Equation (11). We will refer to this ratio as “time constant spread”.

I
In most app l icat ions, there are design bounds on both the minimum

~ I 
and maximum time constants. For example, suppose an array is to oper-
ate in an a ircraft comun icat lon system. On the one han d, the fastest
speed of response Is limited by the signal modulation rate. (If the
weights are too fast, they Interact with the desired siqnal modula-
tion.) On the other hand, the slowest speed of response is limitedI by the need for the array to be fast enough to track aircraft motion.

I ~~~~~~~~ 
_ _ _ _ _ _R h .
*The approx imation i s accura te as lon g as the interference has much

I ,reater power than any other signal present.
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Thus, system requirements usually limit the allowable range of

~MAX’~MIN• 
Because of Equation (11), there i s then a max imum va lue

of I/N that the system can acconmiodate. In the author ’s exper ience,
this value is usually disappointingly low. One is often forced to
accept a des ign that does not meet speed of response requ irements in
order to handle even a modest value of I/N. This is the dynamic range
problem In the LMS array.

III. THE IDEAL CONTROL LAW

To find a way to correct this problem, it is helpful if we first
examine the reason for time constant spread in a more basic way. We
will observe that time cons tant spread occurs because the LMS al gor ithm
is based on a gradient approach. A gradient approach causes the weight
vector to move along some parts of its trajectory at a different speed
than along other parts. This viewpoint will also suggest a way of
modifying the LMS loop to solve the problem.

We may use a simple two-dimensional example as an illustration.
From Equat ion (2) , the average squared error may be written

= R2(t) - 2~
T5 + 4w ( 12a)

= + (w—w 0~~)
T •(w_w0~t). 

(12b)

where

~~~ 
= •~ S (13)

Is the weight vector yielding minimum c2(t), and

j ~ in = R2( t) - 5T$-15 (14)

4 
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I is the value of c2( t) when w = ~~~~ (T denotes the transpose.) Con-

I sl4er a two-dimensional c2(t)—surface defined by

I w0~~ = ) (15)

and

1 (i o \
. — 1  J 

. (16) —

I \o 100)

I The resulting £2(t)—surface has elliptical loci of constant c2(t) in
the w-plane, as shown In F igure 2. A typical trajectory traveled by
a we ight vector under the LMS algorithm is shown in Fi gure 2. The
we ight vector starts at an arb itrary point w0 an d travels to ~~~ alon g

I the curved path shown. At each point of the trajectory, the weights
move in..the-stèepest-descent direction , which is always perpendicular

I to a constant £2(t) locus. Since the eigenvalues are unequal , the
weights do not move in a straight line toward ~~~~ but along a curved
path , as shown. Moreover, because the LMS algorithm_makes the time

I rate change of w proportional to the slope of the e2(t)-surf ace, the
weight vector moves from w0 to w1 in Figure 2 rapIdly, since the slope

I is large In this region, but from point w1 to w0~ slow ly, because
the slope Is small in this region. The movement from w0 to w1 COfl-

I tributes a fast term to the weight response, an d the movement from
w1 to ~~~ contributes a slow term.

I We observe that the spread in time constants would be eliminated
if the weights were always forced to move in a straight line toward

~ I w0~ with a value of dw/dt not dependent on the slope of the surface.
Such a preferred trajectory is shown in Figure 2. This preferred tra-

I jectory is in the vector_direction _ (w_w
0~t). 

for any given w. How-
ever, the gradient of ~~(t), as computed from Equation (12b), is

7
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[
~~ (t)] = 241 (w_w 0~t). 

(17)

so the LMS algorithm is

= -2k 41 (w-w 0~t). (18)

I.e., the LMS algorithm moves the weights in the direction of the vector
not in the direction _ (w_w

0~t
). Since 41 has unequal ei gen-

values , — 4I(w_w0~t
) is usually in a different direction than _ (w_w

0~t
) .

Moreover, the presence of tD in Equation (18) causes the slope of the
c2(t)-surf ace to influence the speed of response.

w 2
GRADIENT

TR AJECTORY t .

_ _ _ __ _ _ _  

H
PREFERRED

TRAJECTORY

Figure 2. Constant in the w-plane.

Clearl y, a better strategy would be to eliminate the 41 from the
right hand side of Equation (18), i.e., to control the weights accord— L
ing to the equation

= _2k(w_w0~t
). (19)

If this were done, the weights would move directly toward w0~t 
and

the elgenvalues of 41 would not influence the speed. To see how such
a control law may be realized , we note from Equation (17) that

8 p
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= ~ •

-~ V
~
t c2( t) )  . (20)

r i
Hence Equation (19) is the same as

I = -k •~ V~ tc2 (t) J , (21)

-
- or equivalently,

1 
~~ • = kv w r€ 2

(tfl . (22)

L i  
_ _ _  _ _ _ _

f 
We will refer to this as the ideal control law for the adaptive array.

~ It differs from the LMS algorithm only in the presence of the matrix 41
multiplying dw/dt. In the next section, we describe a feedback loop
that imp lements this equation.

IV. A MODIFIED FEEDBACK LOOP

When Equation (2) is substituted in Equation (3), the LMS algo—

I rithm becomes

I .~~! = 2kxi(t) [R(t) - ~~~~~ x~( t)w~] . (23)

I Let us cons ider, instead of this, the control law

I = 2k A 
{x1 t [R(t) - xj

_c 

~~ 
xj(t) ~I 

(24)

In this equation, c Is a gain constant and A{.} represents an averaging

I operation to be defined below. This equation corresponds to the feed-
back loop shown In Figure 3. This loop Is similar to that In Figure

1 1, except for the Inclusion of the averaging operation A{.} and the

1
I
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extra ampl if ier, suniner and mult ip l iers to form -

c~~ x~(t)~~~
1

and subtract it from the reference signal. -

OTHER x1w 1 TERMS -

x1 (t) I<_x
—* $ (I )  

-

OTHER x. TERMS
~ dt 1.

Figure 3. The modified feedback loop.

We define the averaging operation A (.} as a finite time average. -

We assume the weights are slowly varying in comparison to the signals -

x 1(t) and R(t). We let A{.} represent a time average over an Interval -

short enough that w1 and dw1/dt may be considered 
constant over this

i nterval , but long compared to the carrier cycles of x1(t) and R(t).

I
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The actua l value of the time interval to be used and the reasons for
including this averaging in the loop will be discussed below. For

J the moment, we settle for this definition, which allows us to make
the approximation 

-

A{xi(t) ~~~~~~~ xj(t) 
,

~~~~~ A{xj(t) xj(t)}

(25 )

I Since the right side of Equation (23) is simply —k VJc
2(t)J , we may

also wr ite -

I 2M
- 2k A 

{xi(t) [R(t) - 
~~~~ 

x~(t)w~]~ = 
~
kVwj 

IA {c2(t)}]

1 (26)

I Equation (24) may then be expressed In matrix form as

- 

I Ci + 2kcA {xx T}J ~~ = —kV ,, CA {c 2 (t ) }J . (27)

To un derstand why the feedback loop In F igure 3 Is useful , let
us suppose for the moment that the averaging operation A{”} Is good

I 
enough that

A {xx T } = 41 (28)

I and

I A {~
2(t) } c2(t) (29)

I where • and ~2(t) denote the infinite time averages of XX T and e2(t).
Then Equation (27) becomes

I
1 11

A
—-~~~~~~~~~
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r

[I + 2kc = -

~~~~~~~~ 

[ ~~~t) J , (30) L
which is simi lar to the ideal control law in Equation (22), except -- -1
for the extra term I on the left. To see how the weights behave under

this equation, we collect all terms involving w on the left side.

Since

v
~
[ E2(t)3 = 2[ 41w — S] (31)

(see Equation (12a)), we have

[I + 2kc 4~] ~~ + 2k41w = 2kS . (32)

Now a typical weight has the solution
2k~ 2k~

- 1+2kc?~ 
- 1+2kc x 2 

- 1
~~~~2M 

t
w.(t) = A 1 e 1 

+ A 1 e + 
~~~~~ 

+ A 1 e + C
1. - -1 1 2

(33)

The ~th time constant in this transient response is

1+2kcX

~3
= . (34

which may be compared with Equation (10) for the LMS algorithm. We

find that now, as becomes large, r,j does not become arbitrarily
smal l as in Equation (10) but is bounded below by c. By choosing c

properly, we may limit the fast response speed of the array without

limiting the signal ratio I/N.

The steady—state solution of Equation (8), the LMS algorithm,
is

w = $ 1 S, (35) [1
12

__

_  

_ _~~~~~~~~~ :~~~~~~~~~~~~~~~~~~~~~~~~~~~
- :~ ~~_— -

~~~ .~ -—~,-‘--~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
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I
which is known to be the optimal solution (1). We note, however, that
Equation (32) has the same steady-state solution, regardless of the

L value of c, so it also yields optimum weights.

The difference between the LMS algorithm and Equation (32) is
in their transient behavior. In particular, if c Is large enough that

~ 1~
2kc x~ > 1 (36)

for every elgenvalue Aj i Equation (32) may be approximated by

2k~ E c -
~~~ + w ]  = 2kS , (37 )

or s imply

c~~~+ w =  41
_i

s , (38)

j

- which is equivalent to the ideal control law in Equation (22).* In
this case, all components w1 have the same time constant, c. There
is only one time constant in the array response, and it is independent
of signal power.

C Equation (30) differs from the Ideal control law because of the
extra term I on the left. This difference means that when the array

ü receives weak signals, so 2kc41 is negligible compared to I, Equation

- - 
(30) becomes the LMS algorithm. With strong signals and large 2kc41,
the I term is negligible and Equation (30) becomes the ideal control
law. For in between cases , there will still be some spread in time
constant if 2kcX~ < 1 for some A,~. But with the loop modified as shown

I in Figure 3, the shortest time constant is dictated by c rather than
by the strongest signal.

*Substltute Equation (31) into Equation (22) to obtain this form.

II 13
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An additional remark Is helpful for understanding the control
loop in Figure 3. If Equation (34) is compared with Equation (10),
we see that each for the new feedback loop is larger than the cor-
responding for the LMS loop. Therefore, when the modifications
shown in Figure 3 are added to the LMS loop, the result i s to slow
down the response time of the array. To obtain a fixed speed of re-
sponse from the array, c is chosen l arge enough that the fast time
constant terms in the LMS loop are slowed down until they are of the
same speed as, or slower than, the slow terms in the LMS loop. The
modified loop in Fi gure 3 is thus slower than the LMS ioop, but has
the advantage of fixed time constants. Constancy of speed of response
is much more important for system design purposes than obtaining the
fastest possible response. Of course, the real time speed of response
of a hardware imp lementation would be adjusted to a suitable value
by choosing gains appropriately.

We now return to the averaging operation A{.} in Equation (24).
A { • } was defined as a finite time average over an interval short com-
pared to changes in w .~ and dw1/dt, but long compared to the fluctu-
ations of x

~
(t) and R(t). We now elaborate on this definition.

Let us rewrite Equation (26) in the form

2k A{xi(t)[R(t) - 
~~~~ 

xJ
(t)w~

j} 
= 2k A{x

~
(t)R(t)} - 2k 

~~ 
A{x

~
(t)xj(t)} Wj.

(39 )

Using this and Equation (25) in Equation (24), we find that the weights
in the modified loop satisfy the system

[I + 2kc A IXXT }] ~~ + 2k A {XXT} w = 2k A {XR(t)} . (40)

14 [
I
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First, we observe that the matrix A ~ XXT} multiplying dw/dt must
I 

be nonsingular if the modified loop Is to have the desired behavior.
To see why this is so, assume for the moment that the matrix A {XXT}
can be approximated by a constant matrix, and make a rotation of co—

1. ordinates In Equation (40) into the principal axes of A (XXT}. Let

w = B ~ , (41)
- - 

where B is a 2M x 2M orthogonal coordinate rotation matrix and n is

Li the weight vector expressed in the principal axes of A {XXT} (the “normal”
weight vector).- Let

I IA * B  A {XX } B

(At 0

( °
= 

: 
. 

. 

(42)

I—) 2M

t i be the matrix of elgenvalues of A {XXT}. After rotating coordinates,
we f ind that the ~th normal weight satisifes the differential eq—
uation

(1+2kc~~) 
—

~~~~~ 
+ 2kx~ ii~ 

= 2kq~, (43)

where qj is the ~
th component of the column vector Q:

Q = B~ A{XR(t)} . (44)

El
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As long as 2kc A~ > 1 , we see that the time constant for will be
approximately c. For any given set of X~, we can assure that all
transients in the array response have time constant c by choosing c L

large enough that 2kcA~ > 1 for all A~, including the smallest one.
Clearly it will be possible to do this only if the smallest eigen-
value is not zero.* If A {XXT} has any zero eigenvalues, the feedback
loop modification in Figure 3 will not have the intended effect.

These remarks make it clear that some averaging is definitely
necessary. For, without averaging,

A {XXT} = XXT, (45)

and the matrix XXT is always of rank 1. (X is an elgenvector of xxT
with eigenvalue XTX. Any other vector orthogonal to X is an eigen-
vector with eigenvalue 0. Hence XXT always has 2M— 1 zero eigenvalues.)
We should not expect fixed time constants in this case.**

*A {XXT} Is positive semidefinite , so all >0.
**If the averaging is omitted, the weights satisfy the system obtained
by substituting Equation (45) in Equation (40):

E I+2kcXXT J~~ + 2kX X Tw = 2k XR( t)

This may be rearranged by multiplying on the left by the inverse

£ I+2kcXXT]
4 

=[i - 
2kc
1+2kcXTX

which yields
dw 2k 1 1 1 2k

I X X w =  I XR( t)
1+2kcX XJ I. 1+2kcX X .

Comparing this with Equation (4) for the LMS algorithm shows that the
only difference between the two Is that the gain constant 2k in the
IMS loop is replaced by the quantity 2k 

i in the modified loop.
1+2kcX X

As long as 2kcX ’X > 1, the effect of thfs change is simply to normalize
the loop gain of the modified loop to X X, the total power in the ar-
ray. This has the effect of fixing the fastest time constant in the
array, but does not solve the problem of time constant spread.
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Next, with A {.} defined as a finite time average, we must deter-
mine what averaging time is required to make all the eigenvalues non-
zero. This question Is most easily answered by considering the problem
In discrete form. Suppose the signals in the array are sampled every

~T seconds. Let X3 denote the ~th sample of vector X,

I x 1(JAT)

x2(j AT)

I . (46)

I X2M(j/!It) 
-

I 
A f inite time average of XXT over an interval I can be approximated
by an average of K samples of XXT:

I

~ ~~• A{XXT} = 4 J~ XX Tdt ~~ ~ X~x~ (47)
tT j=1

11. where T = KAT. Clearly, at least 2M samples are required to make
A {XXT} nonsingular. I.e., the matrix X XT is of rank 1, 1/2(X XT+
X2X2) i s of rank 2 (If X1 and X2 are not coll inear)*, 1/3(X1XI+X2X2+
X3X~) is of rank 3 (if X1, X2 and X3 are not coplanar) , and so forth.
Hence to be nonsingular, the matrix

L 
~~ 

X~X~ (48 )

I must contain at least 2M samples (i.e., K > 2M). For K=2M, the matr ix
will be nonsingular as long as the X1 are l inearly independent. -

To make the vectors X 1 Independent, it is sufficient that the

I sampling times for the X1 be far enough apart. Since

*We can always find 2M-2 vectors orthogonal to both X1 and X , so there

I will always be 2M-2 zero eigenvalues for 1/2(X1X1+X2X~).
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X 1X~ ~ 
Xk(i~

T)X k(jt~
IT), (49)

we have

2M
E {X1X 41 = ~ R ((j-1)&), (50)

~ k=1 xk - -

where E { ’}  denotes the expectation and R
~ (i) is the autocorrelation

function of Xk(t), 
k

R
~ 
(-r) = E{xk (t)x k(t+-r)} . (51) 

- 

-

k

If the sampling time ~T is large enough that all the terms R £ ( i— i )A T J
are small, then E{X1XJ I is small , and X 1 and X~ are nearly or~hogona1,
on the average. The value of AT required to make R

~ 
(T)  ~

‘O may be
determined from the spectral density of the signals 

~k
(t). For ex-

ample, supposø the signals have flat power spectral density S
~

( u ) of
P watts/radian per second over a bandwidth of B Hz., as shown in
Figure 4:

S~
(w )

~2 irB~ ,127rB
1,1 F:

I, r~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~

“

Figure 4. Power spectral density of X
~
(t).

Then the autocorrelatlon function (the Fourier Transform of Sx(~~
)

is 1~’

18 [:I~~
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2P08 

sini~8-r cosw0-r , (52)

so we can insure that on the average the vectors x 1 are orthogonal

I by choosing

1 ~~~~~ . (53)

I Since at least k=2M samples of X will be required to make

-
~~~~~~ 1~~~~~~~~T

~ 1 
j=1 ~

I 
nonslngular, the time interval used in Equation (47) should be approxi-

I
~ I 

T = ~~ , (54)

i.e.,

i A{ XX T} = 

- 

XX T dt . (55)

I We may also express the required averaging time in terms of carr ier
cycles. Since the carrier period is

—

where f0 is the carrier frequency in Hz., we have

I (B/f )  T~ • (57)

I
- Note that B/f0 is the fractional bandwidth.

19
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In practice, simulations of Equation (24) indicate that the av—
— eraging time can be somewhat smaller than this amount. The reason

is that to make A{XXT} nonsingular requires only linear independence

of the X1 , not orthogonality. The value of AT given in Equat ion (53)

makes the X1 orthogonal , which is a stronger condition. In general,
one finds that as the averaging time is reduced, c must be made l arger
to maintain 2kcA1 

> 1 for the smallest eigenvalue. The smallest eigen—
value goes to zero as the averaging time is reduced.

V. AN EXAMPLE

Now we give a simple example to illustrate the behavior of the
feedback loop in Figure 1. Consider a two-element array of omnidi- 

—

rectional elements with four quadrature wei ghts, as shown in Figure
5. We assume a CW desired signal of amplitude Ad is incident on the
array from broadside at frequency w~. We also assume a double side- -;
hand, suppressed carrier AM interference signal of amplitude A 1, car—
rier frequency w~, and modulation frequency wm is incident from an
angle 8~ off broadside. The resulting signal s in the array are

x1(t) = Adcoswot + A icoswmt cos(w0t-~1),

x2(t) = Adsinwot + A iCOSwmt sin(w0t-~1), (58)

x3(t) = AdcoswOt + Ajcoswmt COSw0t,

and
x4(t) = Adsir~ Ot + A iCOSwmt sirk~,0t.

where

•~~ 

= —
~~-— sin 0. . (59)

I- 
L is the element spacing and c is the velocity of light.* We let the

reference signal be

*This c is unrelated to the gain constant c defined earlier. L .
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I R(t) = CO S~ 0
-t . (60)

DESIRED
St GNA L INTERFERENCE

QUADRATURE1 IQUADRATURE !- - 

HYBRID [ HYBRID ]

W

i{
~~~

*
~~~~~~~~~~~~~~~~~ w4

Figure 5. A two-element array.

The array weights satisfy Equation (40). To determine typical
weight transients, we have solved these equations numerically using
a discrete (difference equation) approximation, as follows. All quan-
tities in the equation are sampled array AT seconds. We let w(i) be
the 1th sampled value of the weight vector. We approximate

— dw ~ Aw~j) ~(j+1)-w(j) (61)j AT .

Substituting this In Equation (40) yields an equation for Aw(J):

+ 2kcA
1{XX

T)) aw(j) = 2k~~A~ {X[R(t)-X
TwJ} , (62)

where A {} denotes the average of the quantity in brackets at the
j sample. A

3
{} is computed as a moving average over the last J

samples; i.e.,

11 21 
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A. {XXT} = 1 XkX~ , (63)
J k=j—J+1

and

A.{X [R(t)_XTw]} = ~~~ Xk [Rk
_X
~

w( k )] , (64)
J k=j-J+1

where Xk and R k are the k
th sampled values of the signal vector X and

the Reference Signal R(t). At each iteration, the averaged quantities
in Equations (63) and (64) are computed, the simultaneous equations
for Aw (j ) are solved , and the resulting Aw(j) is added to w(j) to pro-
duce the new value of the weight vector for the next iteration. This
i terative process is continued until w(j) is determined.

Figures 6, 7 and 8 show a typical set of weight transients, com-
puted for the parameter values -

Ad = 3

2k = .05

c = 100

AT = ~~~ (4 samples/carrier cycle)

w L
= it (half—wavelength element spacing)

e~~=3O °

Wm O S W d

and A (•} is an average of A samples (J=8).*

*Note that according to Equation (57), the averaging time should be
4 carrier cycles or 16 samples, s ince we sample 4 times per carrier
cycle. However, simulation results indicate that an 8 sample average
is adequate in this case.

— 
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Figure 6. Weight transients with no interference.
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Figure 7. WeIght transients with A i = 30.
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- I Figure 8. Weightytransients with A1 3000.
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Figure 6 shows the weight transients that result when A 1=0 (I.e.,

when there is no interference). Fi gure 7 shows the transients when

A~=3O, and Fi gure 8 shows them when A1
=3000. In all cases, the weight

vector starts from an arb itrary value of

w =  

~
) .

1

Comparison of Figures 6, 7 and 8 shows that in all three cases

the weight transients proceed with essentially the same time constant.
None of the parameters in the feedback loops have been changed from

one figure to the next. The only change Is the interference amplitude ,

which is seen to have no effect on the speed of response of-the loops.

This constant speed of response is the behavior we set out to obtain. {
VI . CONCLUSIONS

t L

An improved feedback loop for adaptive arrays has been presented. :
1 -

This loop yields the same steady-state weights as the LMS algorithm,
but has the advantage that its time constants are essentially Indendent

of signal power. Use of thIs loop should simp lify design constraints

that arise because of dynamic range requirements.

The modified feedback loop is shown in Figure 3. This loop in-

cludes an averaging operation, defined by F
t

A -(f(t)1 1 f f(~)dn .I t-T -
i 

-

An averaging time of approximately I--- 
-

26 

- —-- ---—__________________________ -=~ --,r.~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~
-
~-- -~~~- - ~

---—- -

- ------s-L — 
- -~~~~~

is adequate to make the system have the desired behavior, where M Is
the number of array elements, B/f 0 is the fractional bandwidth, and

~ 
j  I0 is the carrier period.

j As a closing remark we comment that the feedback modifications
shown in Figure 3 can also be used with an array of the type originall yI 

~ 
described by Applebaum (5). In this case, the reference signal In

1 ~~ - Figure 3 is eliminated and the main beam direction is controlled by
adding an appropriate steering vector component to each weight. This
type of array is useful when the desired signal angle of arrival is

- 
known in advance.
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